
Control Flow Reversal for Adjoint Code Generation

Uwe Naumann and Jean Utke
Mathematics and Computer Science Division, Argonne National Laboratory

9700 South Cass Avenue, Argonne, IL 60438, USA
naumann,utke @mcs.anl.gov

Andrew Lyons
Vanderbilt University

2201 West End Avenue, Nashville, TN 37235, USA
andrew.m.lyons@vanderbilt.edu

Abstract

We describe an approach to the reversal of the control
flow of structured programs. It is used to automatically
generate adjoint code for numerical programs by seman-
tic source transformation. After a short introduction to
applications and the implementation tool set, we describe
the building blocks using a simple example. We then illus-
trate the code reversal within basic blocks. The main part
of the paper covers the reversal of structured control flow
graphs. We show the algorithmic steps for simple branches
and loops and give a detailed algorithm for the reversal of
arbitrary combinations of loops and branches in a general
control flow graph. 1

1. Introduction

Research into the reversal of the control flow of struc-
tured programs is part of the “Adjoint Compiler Technol-
ogy and Standards”2 (ACTS) project, a collaboration be-
tween MIT, Rice University, and Argonne National Labora-
tory/University of Chicago. It has a twofold goal. The first
is to provide an open platform, called OpenAD, for develop-
ing of algorithms for the automatic semantic transformation
of numerical programs. The second is to use this platform
to create an adjoint compiler for generating efficient adjoint
code for the MIT General Circulation Model3 [8]. A control

1This work was supported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Sci-
entific Computing Research, U.S. Department of Energy, under Contract
W-31-109-ENG-38 and by NSF under ITR contract OCE-0205590.

2See www.autodiff.org/ACTS.
3See mitgcm.org.

flow reversal is implemented as one of the fundamental al-
gorithms provided by OpenAD. The principal setup of Ope-

whirl2xaif

Open64

xaif2whirl

F’

whirlF’

xaifxaifF

Fwhirl

F

xaifBooster

F’

OpenAnalysis

Figure 1. OpenAD setup

nAD and its interaction with other software is illustrated in
Fig. 1.

OpenAD focuses on the semantic transformation of nu-
merical codes. In order to achieve language independence
of the transformation algorithms, the numerically relevant
core is extracted and represented in an intermediate XML
format called xaif.4. The algorithmic component called
xaifBooster accepts xaif and transforms it. The modified
xaif is then back-translated into the original programming
language. In Fig. 1 all language-dependent parts are shown
in the shaded area. The core OpenAD components are en-
circled by the dashed line. Currently OpenAD uses two
front ends for the translation to and from xaif. For C/C++
codes we use the EDG5 front-end in combination with
Sage 3.6. In this paper we concentrate on the Fortran front-

4See www.mcs.anl.gov/xaif
5See www.edg.com
6See www.llnl.gov/CASC

end Open64.7

Consider a Fortran code implementing a vector function
as in Eqn. (1). The Open64 front-end performs a lexical,

syntactic, and semantic analysis and produces an interme-
diate representation of in the whirl format.8 OpenAnaly-
sis9 is a framework that provides typical compiler analyzes
and can be used to implement domain-specific analyzes.
The whirl2xaif component creates a representation of the
numerical core of in xaif format, including call
graphs and control flow graphs built by using OpenAnal-
ysis. The transformation algorithms implemented in xaif-
Booster then modify and return . In the case of
adjoint code generation represents the differentiated
code. and are combined by xaif2whirl to con-
struct a whirl representation of the differentiated code. The
unparser of Open64 then transforms the whirl representa-
tion back into Fortran.

The paper is structured as follows. In Sec. 2 we briefly
introduce the elements of the “big picture” that our con-
trol flow reversal algorithm fits in. A method for building
adjoint basic blocks is discussed in Sec. 3. In Sec. 4 we de-
rive an algorithm for the reversal of structured control flow
graphs. We draw conclusions in Sec. 5.

2. The Big Picture

Automatic differentiation (AD) [2, 3, 5] is a set of tech-
niques for transforming numerical programs into derivative
code that can be used to compute derivatives of vector func-
tions such as Jacobians, Hessians, or higher-order Taylor
coefficients. A detailed description of the mathematical
foundations of AD is beyond the scope of this paper. Re-
fer to [4] for a discussion of the theory.

The adjoint of a program implementing a vector function

(1)

is obtained by the reverse mode of AD. It represents a se-
mantically modified version of the original program. Given
values for and the adjoints of the original outputs the
adjoint program computes the transposed Jacobian vector
product

(2)

This process is best illustrated with the help of a simple
example. Consider the following Fortran implementation
of a vector function where

i:=1
do while (i<3)
if (i<2) then

y(2):=sin(x(1))

7See hipersoft.cs.rice.edu/open64.
8This is the Open64-specific internal representation.
9See www.hipersoft.rice.edu/openanalysis.

else
y(1):=cos(x(2))

end if
i:=i+1

end do
y(3):=y(1)*y(2)

The example has been crafted to illustrate some impor-
tant features of control flow reversal for adjoint codes. We
assume the availability of a control flow graph (CFG) for
the code for . A forward run is required to store informa-
tion regarding the specific path taken through the CFG as
well as numerical values needed for the adjoint computation
during the following reverse sweep. Domain-specific data
flow analyzes for reverse-mode AD have been developed to
determine these sets of numerical values while minimizing
the conservative overestimate (see [7]). For our simple ex-
ample no numerical values need to be stored as none of the
variables gets overwritten. However, we require additional
statements to store the path through the CFG. To this end we
push a unique identifier onto a stack for each branch inside
the if-statement and bu counting the number of iterations
performed by the loop.

i:=1
ctr:=0
do while (i<3)

if (i<2) then
y(2):=sin(x(1))
push(1)

else
y(1):=cos(x(2))
push(0)

end if
i:=i+1
ctr:=ctr+1

end do
push(ctr)
y(3):=y(1)*y(2)

We call this code version the augmented forward code.
The adjoint code is obtained by applying Eqn. (2) to each
statement in the original code yields .
Alternatively Eqn. (2) can be applied to whole basic blocks
as described in Sec. 3. The control flow is reversed by exe-
cuting all statements in reverse order. The number of itera-
tions of the adjoint loop is equal to the number of iterations
performed by the original loop for the current set of inputs.
The decision about which branch to take is based on what
has been stored during the forward sweep. The adjoint ver-
sion of variables in the original code is marked by the suffix
adj.

y_adj(1):=y(2)*y_adj(3)
y_adj(2):=y(1)*y_adj(3)
rBound:=pop()
do rCtr:=1,rBound

branchId:=pop()
if (branchId=1) then
x_adj(1):=cos(x(1))*y_adj(2)

else
x_adj(2):=-sin(x(2))*y_adj(1)

end if
end do

The local partial derivatives used in the adjoint state-
ments are the results of applying the well-known differ-
entiation rules. For example, and

The fact that Eqn. (2) can be applied per state-
ment is an immediate consequence of the chain rule.

Adjoint codes permit the accumulation of the Jacobian
at a cost proportional to the number of outputs Gradi-
ents () can be obtained at a small constant multiple
of the cost of evaluating the function itself. This property
is of particular interest for the ACTS project. For exam-
ple, in the context of data assimilation in oceanography the
gradient of some objective with respect to the grid points
of a very fine discretization of the ocean is required. Po-
tentially, the number of input variables is on the order of

. Neither forward-mode AD nor approximation by finite
difference quotients represents a feasible approach, as each
has a complexity that is .

From now on we will consider a representation of the
CFG as the directed graph . Figure 2 (a) shows for the
example code introduced earlier.10 The basic block repre-
sented by vertex is the result of a canonicalization step
performed by the front-end that substitutes a Boolean vari-
able for the loop condition. Formally, we define structured
CFGs as follows.

Definition 1 A structured CFG is a directed
graph consisting of a list of integer vertices and a list
of edges Vertices have a type, where

ENTRY, BASICBLOCK, LOOP, ENDLOOP,
BRANCH, ENDBRANCH, EXIT has a unique entry

ENTRY and a unique exit
EXIT 11 BASICBLOCK

and ENDLOOP vertices have one predecessor and one suc-
cessor each. Both the number of predecessors and succes-
sors of LOOP vertices is equal to two. The number of pre-
decessors of BRANCH and EXIT vertices as well as the
number of successors of ENDBRANCH and ENTRY ver-
tices is equal to one.
Edges can have labels. All edges emanating from

a BRANCH vertex are labeled with mutually distinct iden-
tifiers. Edges whose source is a LOOP vertex that lead into
the loop body carry the label ”1”.

In this paper we follow a unified approach for all kinds of
loops. A formal distinction between for-loops, pre-loops,
and post-loops is unnecessary, as shown in Sec. 4.4. We use
the vertex type LOOP for all these constructs.

10graphviz is used to visualize the graphs as part of xaifBooster’s de-
bug output (see www.research.att.com/sw/tools/graphviz).

11We denote the set of predecessors and successors of a vertex by
and respectively. The cardinality of a set is denoted by

Basic blocks can contain assignments and subroutine
calls. The latter require the code reversal to be extended
to the call graph. This is a research topic in itself, and a
variety of solutions have been proposed (see, for example,
[4, Chapter 12]. The techniques proposed in this paper can
be used by all of them.

We present a method for transforming a subroutine that
implements a vector function as in Eqn. (1) into a seman-
tically modified version that computes the product of the
transposed Jacobian with a vector. If the subroutine is given
in form of a CFG, then the transformation
consists of two parts.

represents the augmented forward code and
is equivalent to with all basic blocks semantically mod-
ified as in Eqn. (4) and Eqn. (5). Additional basic blocks
are inserted that contain instructions for storing the flow of
control as shown in Sec. 4.

The CFG of the adjoint code is built by us-
ing the information stored during the execution of the aug-
mented forward code. It executes the adjoint basic blocks,
constructed as in Eqn. (6), in reverse order.

3. Adjoint Basic Blocks

A potential improvement of the adjoint code can be
achieved by preaccumulating Jacobians of basic blocks
using elimination techniques in linearized computational
graphs [9]. Basic blocks can be viewed as local vector func-
tions as in Eqn. (1). The preaccumulation algorithm im-
plemented in xaifBooster generates optimized code for the
computation of in the following manner. We consider
the simple example of a basic block in Eqn. (3).

(3)

Linearization implies augmenting the code to include the
computation of local partial derivatives for each
elemental operation as in Eqn. (4).

(4)

This may require the assignment of intermediates as in the
expression to temporary variables. A linearized
computational graph (LCG) is derived from the
linearized code, in the form of a directed acyclic graph. The
vertices represent input variables

, intermediates , and output variables . The
edges are labeled with their respective local
partial derivatives . Fig. 3 (a) shows represented by
our linearized vector function.

1: ENTRY

2: BASICBLOCK

3: BASICBLOCK

4: PRELOOP

5: BRANCH

1

11: BASICBLOCK

6: BASICBLOCK

1

7: BASICBLOCK

8: ENDBRANCH

9: BASICBLOCK

10: ENDLOOP

12: EXIT

1: ENTRY

2: BASICBLOCK

3: BASICBLOCK

13: BASICBLOCK

4: PRELOOP

5: BRANCH

1

14: BASICBLOCK

6: BASICBLOCK

1

7: BASICBLOCK

15: BASICBLOCK

8: ENDBRANCH

9: BASICBLOCK

17: BASICBLOCK

10: ENDLOOP

16: BASICBLOCK

11: BASICBLOCK

12: EXIT

-12: ENTRY

-11: BASICBLOCK

13: BASICBLOCK

-10: FORLOOP

-9: BASICBLOCK

1

-3: BASICBLOCK

14: BASICBLOCK

-8: BRANCH

-7: BASICBLOCK -6: BASICBLOCK

1

-5: ENDBRANCH

1

-4: ENDLOOP

1

-2: BASICBLOCK

-1: EXIT

(a) (b) (c)

Figure 2. and

(a) (b)

(c)

Figure 3. and JAE of

3.1. Edge Elimination

The collection of algorithms in xaifBooster provides
three elimination techniques for the accumulation of Jaco-
bian matrices, known as vertex [6], edge, and face elim-
ination [9]. For our example, we will use edge elimina-
tion. An edge for short, can be either front or
back eliminated, denoted by or respectively.
Front elimination of is executed by connecting all ver-
tices in the predecessor set with all vertices
in the successor set . These new edges are

. Only edges whose target is not an output
vertex can be front eliminated.

Back elimination of is executed by connecting all
vertices in the predecessor set with all ver-
tices in the successor set . The new edges
are . Only edges whose source is not an
input variable can be back eliminated.

In both cases the new edges are labeled with the val-
ues and the edge is removed. If
an edge elimination or would create an al-
ready existing edge , the label of is incremented

. This is referred to as absorption, as
opposed to the creation of new edges that represent fill-in.

If at any point during the elimination process an inter-
mediate vertex has no more in- or out-edges, the vertex and

all incident edges are removed from the graph. Thereby, a
complete sequence of edge eliminations reduces to a bi-
partite graph consisting only of vertices and edges
whose labels represent the Jacobian entries.

Each multiplication or combined increment / multipli-
cation on the edge labels implies a Jacobian accumulation
expression (JAE), which is stored in a list. In our exam-
ple the elimination implies a single JAE, shown in
Fig. 3 (c). Fig. 3 (b) shows after edge has been
eliminated. To understand why was eliminated first,
we must examine our method of choosing eliminations.

3.2. Heuristics

Use of the chain rule in preaccumulation yields a com-
putationally complex search space when attempting to de-
termine the optimal sequence of edge eliminations. We use
two different types of heuristics to determine our elimina-
tion sequences. One group attempts to minimize the num-
ber of operations, that is, the number of JAEs implied by a
complete elimination sequence. The other group attempts
to maximize data locality in the generated code. In order to
narrow the choice to a single elimination target, it may be
necessary to successively apply several heuristics.

For our example, we are primarily interested in maxi-
mizing data locality and therefore choose a heuristic from
the second group as the first heuristic in the sequence. This
heuristic is called highest sibling degree, or simply HS.

HS, like all edge elimination heuristics, is a mapping
from a set of elimination targets to a subset .
An elimination target consists of an edge and an
elimination direction that can be either front or back.

HS will choose elimination targets that have the maxi-
mum sibling degree denoted by . , the sibling
degree of with respect to the previous elimination , de-
noted , is defined by

The maximum sibling degree is defined as follows:

HS selects . In the
case when , . The elimination of a
target directly following the elimination of a target
with creates code that stipulates the immediate
absorption of a new edge, which should still be resident in
fast memory.

Note that if the last elimination was a front (back) elimi-
nation, any edge being considered for back (front) elimina-
tion must have a sibling degree of 1. Thus, HS can choose
front (back) eliminations following a back (front) elimina-
tion only when the maximum sibling degree is 1.

(a)

(c)

(b)

Figure 4. JAE of and

When HS determines a sibling set with , we
need to narrow the choice by applying another heuristic as
a tiebreaker. For our example, we use a lowest Markowitz
degree heuristic (LM). The Markowitz degree for any front
or back elimination is defined as or respectively; see
[1] for an in-depth description of Markowitz-type heuristics
for edge elimination on an LCG.

If more than one edge exists in the most favorable equiv-
alence class for LM, reverse mode is used to acquire a
unique elimination. Because forward and reverse mode are
implemented based on a single topological sort on they
will always return a unique selection.

3.3. Preaccumulation

Our first elimination on the graph shown in Fig. 3 must
be decided by LM because there isn’t any data in memory
yet. LM chooses both and because they are
in the same equivalence class, with Markowitz degree 1.
Reverse mode chooses because vertex 3 occurs after
vertex 2 in a topological sort of our LCG. Now that we have
made an elimination and we have some data in fast memory,
we can make use of data locality in order to expedite our
accumulation.

Inspection of Fig. 3 (b) reveals that both and
are siblings (of sibling degree 1) of . How-

ever, we cannot eliminate edge because vertex 4 is a
dependent vertex. Without better analyzes any vertex with
more than 1 out-edge must be considered an output variable,
in case it appears in some right-hand side later in the code.
Hence, every vertex in our graph except for twill be treated
as an output. One of the two JAE graphs generated by the
elimination of is shown in Fig. 4 (a); the resulting
LCG appears in Fig. 4 (b).

Fig. 4 (c) shows the complete bipartite graph that repre-
sents the Jacobian . After a complete sequence of edge
eliminations, the JAE graphs that represent the remaining
edges are identified as Jacobian entries referenced in
Eqn. (5) and Eqn. (6). Finally, xaifBooster, when generating
the modified xaif output , iterates through the list of
JAE graphs and generates the corresponding xaif represen-
tation that is unparsed back into Fortran. For our example
a representation of this code is listed in the center column
of Eqn. (5). The left column of Eqn. (5) shows the respec-
tive elimination steps. The right column indicates which
labels are Jacobian entries that are pushed onto the stack.
For and the original edge labels are already Ja-
cobian entries as defined in Eqn. (4).

push()
push()

push()

push()

push()
push()
push()
push()

(5)

The subsequent reverse sweep pops these values and per-
forms a (sparse) transposed Jacobian vector product with
the vector of the adjoint variables that correspond to the
original variables .

pop() returns:

(6)

The adjoints of certain basic block outputs need to be set to
zero explicitly if the basic block appears in the context of a
larger program. The discussion of the conditions is beyond
the scope of this paper.

4. Adjoint Control Flow

In this section we describe our approach to the automatic
reversal of the control flow. The method is based on a topo-

logically sorted vertex list obtained by an algorithm de-
scribed in Sec. 4.1. The transformation is de-
fined in Sec. 4.2. Specifics of the reversal for branches and
loops are discussed in Sections 4.3 and 4.4, respectively.
The heart of this section is an algorithm for for reversing
structured CFGs defined by Def. (1).

4.1. Topological Sort

Algorithm 1 () We start with an empty
vertex stack . The functions and are the
usual stack access routines. The visited flag of all vertices
is assumed to be false. A temporary list is used to
hold all vertices initially. is emptied. The algorithm is
called with the ENTRY vertex as argument.

ENTRY:
1 If () Return
2
3 If (ENDBRANCH) Then
4 Return
5 Endif
6
7 If (LOOP) Then
8
9
10 Else
11
12 Endif
13 If (BRANCH) Then
14
15
16
17 Endif
18 Return

We require that any given vertex succeeds its dominators
and it precedes its post-dominators. In particular, this re-
quirement implies that a ENDLOOP vertex succeeds any
vertex in the corresponding loop body. Furthermore, it is
ensured that any ENDBRANCH vertex succeeds the ver-
tices in either of the branches.

Every vertex is visited once (lines 1..2). For BRANCH
vertices, the corresponding ENDBRANCH is appended
to the sorted vertex list only after all vertices inside the
branches have been processed. The algorithm is then ap-
plied recursively to the successor of the ENDBRANCH ver-
tex (lines 3..5 and 13..17). Loop bodies are sorted prior to
the successor of a LOOP vertex (lines 7..10). By default, the
algorithms always proceeds to the successors of the given
vertex (line 11).

4.2. Vertex Transformation

Alg. 2 defines the transformation of vertices in into
vertices in and

Algorithm 2 ()

1
2 If ENTRY Then
3 ENTRY EXIT
4 ElseIf EXIT Then
5 EXIT ENTRY
6 ElseIf BASICBLOCK Then
7 BASICBLOCK (as in Equations (4, 5))
8 BASICBLOCK (as in Equation (6))
9 ElseIf BRANCH Then
10 BRANCH
11 ENDBRANCH
12 ElseIf ENDBRANCH Then
13 ENDBRANCH
14 BRANCH
15 mkr(i)=branchId
16 ElseIf LOOP Then
17 LOOP
18 ENDLOOP
19 ElseIf ENDLOOP Then
20 ENDLOOP
21 FORLOOP
22 rCtr(j):=1,rBound(j)
23 Endif
One possible approach to building augmented and adjoint
basic blocks has been discussed in Sec. 3. The adjoint of
an ENDBRANCH vertex is a BRANCH vertex. The deci-
sion on which branch to execute during the adjoint sweep is
made by matching the restored with the
which are unique for all branches that are merged at The

represent the labels of the corresponding edges.
Adjoint loops are FORLOOPs performing it-
erations of the adjoint of the original loop body, where

is the result of counting the number of itera-
tions during the augmented forward sweep. Further details
can be found in Sec. 4.3 and Sec. 4.4.

4.3. Branches

Consider the CFG in Figure 5 (a). It shows a two-way
branch preceded and succeeded by a basic block and results

1: ENTRY

2: BASICBLOCK

3: BRANCH

4: BASICBLOCK

6: ENDBRANCH

5: BASICBLOCK

7: BASICBLOCK

8: EXIT

1

1: ENTRY

2: BASICBLOCK

3: BRANCH

4: BASICBLOCK

9: BASICBLOCK

5: BASICBLOCK

10: BASICBLOCK

6: ENDBRANCH

7: BASICBLOCK

8: EXIT

1

-8: ENTRY

-7: BASICBLOCK

9: BASICBLOCK

-6: BRANCH

-5: BASICBLOCK -4: BASICBLOCK

1

-3: ENDBRANCH

1

-2: BASICBLOCK

-1: EXIT

2: <B2>
3: if (...)
4: <B4>
else

5: <B5>
6: end if
7: <B7>

2: <B2>
3: if (...)
2: <B4>
9: push(1)
else

5: <B5>
10: push(0)
6: end if
7: <B7>

-7: <B7>
9: branchId:=pop()

-6: if (branchId=1)
-4: <B4>

else
-5: <B5>
-3: end if
-2: <B2>

(a) (b) (c)

Figure 5. Branch Reversal

from an IF-THEN-ELSE statement. The edge leading into
the true branch is labeled with 1. For multi-way branches
all edges are labeled with a unique identifier. is shown in
Figure 5 (b). Two new basic blocks (9 and 10) are inserted
that contain a single statement each. A call to push stores
the value of the corresponding edge label on the stack. To
ensure the correctness of the value that is pushed, we require
the edges leading into the ENDBRANCH vertex be marked
by the identifier of the corresponding edge emanating from
the matching BRANCH vertex. This is achieved by a simple
traversal algorithm based on Algorithm 1.

is shown in Figure 5 (c). Vertices that correspond to
some vertex in are marked with the respective negative in-
dex. The ENDBRANCH vertex in becomes a BRANCH
vertex in The latter is preceded by a new basic block (9)
that pops the identifier of the branch taken during the for-
ward run from the stack. The corresponding adjoint branch
is then executed.

Algorithm 3 (Adjoint of Simple Branch) The adjoint
code uses a stack to store the control flow (push) and
to restore it in reversed order (pop). Branches12 are
marked with a unique identifier 13 where is the

12These are the paths connecting a given BRANCH vertex with its given
ENDBRANCH vertex.

13Only one branch is executed for given inputs of the original program.
Therefore, a second index for addressing the single branches explicitly is
not required.

corresponding ENDBRANCH vertex.

1 If ENDBRANCH Then
2 S.push(mkr(j))

3
4 Else
5
6 Endif

7 If ENDBRANCH Then
8 branchId:=S.pop()

9
10 Else
11
12 Endif

and are constructed as in Sec. 4.2. Edges
are constructed similar to their originals (line
5) with an exception if the target is an ENDBRANCH
vertex. In this case a new basic block containing a statement
that pushes the unique marker of the current branch onto
needs to precede (lines 1..3).

If the source of an edge is not an END-
BRANCH vertex, then its adjoint is obtained by switching
its direction (line 11). Otherwise, the new basic block that
restores the branchId value needs to precede (lines 7..9).

4.4. Loops

The CFG of a simple loop is shown in Fig. 6 (a). We re-
verse loops by counting the executions of the loop body per-
formed during the forward sweep. Therefore, a loop counter
variable ctr is initialized before the loop statement. After
the end of the loop body ctr is incremented by one. The
final value is pushed onto the stack right after the end of the
loop. This procedure results in the augmented forward code
and the corresponding augmented CFG that are shown in
Fig. 6 (b). The adjoint code is displayed in Fig. 6 (c). Any
type of loop is transformed into a FORLOOP with loop in-
dex rCtr that executes the adjoint of the loop body exactly
ctr times, where ctr is the number of executions of the
loop body while running the forward code. This value is
restored from the stack as rBound. In Fig. 6 (c) all adjoint
CFG vertices are marked with the negative of the index of
their corresponding original vertex.

Algorithm 4 (Adjoint of Simple Loop) Again, a stack
is used to store the control flow (push) and to restore it in
reversed order (pop). The number of executions of the loop

1: ENTRY

2: BASICBLOCK

3: FORLOOP

4: BASICBLOCK

1

6: BASICBLOCK

5: ENDLOOP 7: EXIT

1: ENTRY

2: BASICBLOCK

8: BASICBLOCK

3: FORLOOP

4: BASICBLOCK

1

9: BASICBLOCK

10: BASICBLOCK 6: BASICBLOCK

7: EXIT5: ENDLOOP

-7: ENTRY

-6: BASICBLOCK

8: BASICBLOCK

-5: FORLOOP

-4: BASICBLOCK

1

-2: BASICBLOCK

-3: ENDLOOP

1

-1: EXIT

2: <B2>
3: do ...
4: <B4>
5: end do
6: <B6>

2: <B2>
8: ctr:=0
3: do ...
4: <B4>

10: ctr:=ctr+1
5: end do
9: push(ctr)
6: <B6>

-6: <B6>
8: rBound:=pop()

-5: do rCtr:=1,rBound
-4: <B4>
-3: end do
-2: <B2>

(a) (b) (c)

Figure 6. Loop Reversal

body corresponding to a LOOP vertex are counted dur-
ing the augmented forward sweep. The counters are
equal to zero initially.

1 If LOOP Then
2 ctr(j):=0

3
4 ElseIf ENDLOOP Then
5 ctr(j):=ctr(j)+1

6
7 ElseIf LOOP Then
8 S.push(ctr(i))

9
10 Else
11
12 Endif

13 If LOOP Then
14
15 ElseIf LOOP Then
16 rBound(i):=S.pop()

17
18 Else
19
20 Endif

The construction of vertices in and is described in
Sec. 4.2. The forward sweep needs to be augmented
by statements for initializing [], increment-
ing [], and storing the final value
[] of the counter associated with a LOOP
vertex The initialization is done right before the LOOP
vertex (lines 1..3), and the final value is stored right after
the execution of the loop (lines 7..9). The incrementation
of is performed right before the ENDLOOP vertex
that corresponds to (lines 4..6). The transformation of any
remaining edges is straightforward (line 11).

If the source of an edge is a LOOP vertex
and is not leading into the loop body, then the value of

needs to be restored right before the adjoint loop as
(lines 15..17). If is a LOOP vertex that follows

in the topological order, then the adjoint edge leads into
the corresponding adjoint FORLOOP (lines 13..14). Oth-
erwise, the adjoint of an edge is obtained by switching its
direction in (line 19).

Note that this algorithm does not explicitly refer to any
index or condition that could be part of the original LOOP
construct in . Differing from the example used in Sec. 2,
any dependencies on such loop indices have to be resolved
by other means, for example, as introduced in [7].

4.5. Nesting Branches and Loops

Obviously, Algorithms 3 and 4 do not cover the general
case where loops and branches can be nested arbitrarily.
The following issues need to be considered.

Vertices need to be visited in the topological order de-
fined by Algorithm 1. In particular, this implies that loop
bodies are processed before the statements following loop.

A stack is required for storing the loop counter symbols
as they are required for inserting the correct incrementation
statement right before the matching ENDLOOP vertex in

Algorithm 5 (Adjoint Structured Control Flow Graphs)
This algorithm combines Algorithms 3 and 4. The starting
conditions are as follows: is empty, for all
LOOP vertices and is used to mark the branches
merged by an ENDBRANCH vertex

1 If LOOP Then
2 S.push(ctr(i))

3
4 If LOOP Then
5 ctr(j):=0

6

7 ElseIf ENDLOOP Then
8 ctr(j):=ctr(j)+1

9
10 ElseIf ENDBRANCH Then
11 S.push(mkr(j))

12
13 Else
14
15 Endif
16 ElseIf LOOP Then
17 ctr(j):=0

18
19 ElseIf ENDLOOP Then
20 ctr(j):=ctr(j)+1

21
22 ElseIf ENDBRANCH Then
23 S.push(mkr(j))

24
25 Else
26
27 Endif

28 If LOOP Then
29 rBound(i):=S.pop()

30
31 If LOOP Then
32
33 Else
34
35 Endif
36 ElseIf ENDBRANCH Then
37 branchId:=S.pop()

38
39 If LOOP Then
40
41 Else
42
43 Endif
44 ElseIf LOOP Then
45
46 Else
47
48 Endif

The decision about how to augment a given edge in is

based either on its source (if needs to be succeeded by a
new basic block to store the control flow) or on its target (if

needs to be preceded by such a new basic block). The first
situation occurs if is a LOOP and does not lead into
the loop body (lines 1..3). Then needs to be stored.
There are three cases in which a new basic block needs to be
inserted right before They are handled separately (lines
16..23). Special care must be taken if two new successive
basic blocks need to be inserted between and (lines
4..12).

The construction of is based on the fact that each
has a matching There are two cases

where new basic blocks need to be inserted to restore the
control flow. If is a LOOP vertex and does not lead into
the loop body, then needs to be restored prior to the
corresponding FORLOOP vertex in (lines 28..30). Sim-
ilarly, the adjoint of an ENDBRANCH vertex must be pre-
ceded by a new basic block to restore (lines 36..38).
A special treatment is required is a LOOP vertex and is
not the matching ENDLOOP vertex. The source of the ad-
joint edge must then be the FORLOOP vertex of the adjoint
loop (lines 31..32, 39..40, and 44..45). All other cases are
covered by the simple reversal of the edge (line 47).

The result of applying Alg. 5 to the CFG in Fig. 2 (a) is
shown in Fig. 2 (b) and (c). In the labels of the edges
emanating from LOOP and BRANCH vertices have been
propagated to the matching ENDLOOP and ENDBRANCH
vertices. Again, adjoint vertices corresponding to vertices
in carry the respective negative index. Vertices whose
index is greater than 12 (the index of the EXIT vertex in

) contain statements for storing and restoring the flow of
control.

5. Conclusions

The strategy presented in this paper is not the only pos-
sible method to reverse the control flow of a subroutine.
For example, instead of storing independent identifiers for
branches, one could store the value of the condition. A cor-
responding approach can be taken for multi-way branches
and loops. In doing so, however, one introduces additional
dependencies between the original code and the adjoint
code, for example, the requirement for additional canoni-
calization. The present approach allows the algorithms to
be formulated purely in terms of the CFG.

We realize that the repeated insertion of new basic blocks
for storing and retrieving the flow of control is not neces-
sary. The corresponding statements could be merged with
already existing basic blocks. In any case, the final unparsed
codes are equivalent.

The algorithms introduced in this paper have been imple-

mented in the OpenAD framework. There the adjoining of
the basic blocks is decoupled from the reversal of the CFGs.
Such a decoupling favors the insertion of new basic blocks
for storage and retrieval of control flow information, as sug-
gested in this paper. However, the examples in this paper
cover only the most simple cases. The adjoining of more
complex codes requires more advanced analyzes to guar-
antee semantical correctness. We mentioned the issue of
variable address computation depending on loop variables
in Sec. 4.4. Another issue is the adjoining of unstructured
CFGs. The most general reversal algorithm assigns unique
identifiers to all basic blocks and stores them at execution
during the augmented forward sweep. The adjoint code re-
stores the identifiers in reverse order and executes the corre-
sponding adjoint basic blocks. Exploitation of partial struc-
turedness is the subject of future work.

References

[1] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-
type heuristics for computing Jacobian matrices efficiently. In
ICCS 2003, volume 2658 of LNCS, pages 575 –584, Berlin,
2003. Springer.

[2] M. Berz, C. Bischof, G. Corliss, and A. Griewank, edi-
tors. Computational Differentiation: Techniques, Applica-
tions, and Tools. SIAM, Philadelphia, 1996.

[3] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Nau-
mann, editors. Automatic Differentiation of Algorithms: From
Simulation to Optimization. Springer, New York, 2002.

[4] A. Griewank. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. Number 19 in Frontiers
in Appl. Math. SIAM, Philadelphia, 2000.

[5] A. Griewank and G. Corliss, editors. Automatic Differentia-
tion of Algorithms: Theory, Implementation, and Application.
SIAM, Philadelphia, 1991.

[6] A. Griewank and S. Reese. On the calculation of Jacobian ma-
trices by the Markowitz rule. In A. Griewank and G. Corliss,
editors, [5], pages 126–135. SIAM, Philadelphia, 1991.

[7] L. Hascoët, U. Naumann, and V. Pascual. TBR analysis in
reverse-mode automatic differentiation. Preprint MCS-P936-
0202, Argonne National Laboratory, 2002.

[8] J. Marshall, C. Hill, L. Perelman, and A. Adcroft. Hydro-
static, quasi-hydrostatic and nonhydrostatic ocean modeling.
J. Geophysical Research, 102, C3:5,733–5,752, 1997.

[9] U. Naumann. Optimal accumulation of Jacobian matrices by
elimination methods on the dual computational graph. Math.
Prog., 2003. To appear.

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (”Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

